Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.
نویسندگان
چکیده
The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.
منابع مشابه
Insights into the Nutritional Physiology of Nickel
Nickel (Ni) is essential for plants, yet its physiological role is poorly understood. Ni-deficient and Ni-sufficient pecan [Carya illinoinensis (Wangenh.) K. Koch] trees were compared regarding the impact of Ni nutritional status on reduced nitrogen (N) forms present in xylem sap at spring bud break. High performance liquid chromatography (HPLC) of xylem sap of Ni-sufficient trees found organic...
متن کاملEffects of branched-chain amino acid deficiency in diets on growth factors, pancreatic enzymes activity and whole body proximate of Sobaity seabream juvenile (Sparidentex hasta)
On the current study the effects of reducing branched-chain amino acids (BCAA) in diets of Sobaity sea bream in a constant level (40%) on growth and nutritional indices, pancreatic enzymes activity, whole body chemical proximate and amino acids, was assessed. This experiment was conducted in Marine Fish Research Station of Imam Khomeini harbor during July and August of 2014. For these purposes,...
متن کاملEffects of Some Amino Acids and Organic Acids on Enzymatic Activity and Longevity of Dianthus caryophyllus cv. Tessino at Pre-Harvest Stage
Carnation (Dianthus caryophyllus L.) is one of the most important cut flowers in the world. This experiment was carried out to evaluate the effects of pre-harvest application of some amino acids and organic acids on enzymatic traits and longevity of carnation flowers (Dianthus caryophyllus cv. Tessino) based on completely randomized design with 13 treatments and three...
متن کاملEvaluation the Effects of Foliar Treatments of Polyamines and Some Organic Acids on Quantitative and Qualitative Traits in Some Pistachio Cultivars
Among the most important problems of pistachio are physiological disorders such as fruit abscission and production of blank nuts. Environmental stresses and inadequate nutrition during flowering time have increased these problems in recent years. In order to evaluate the effects of foliar treatments with polyamines and other compounds (amino acids and ascorbic acid) on quantitative and qualitat...
متن کاملApplication of exogenous organic acids and remediation process of lead and cadmium contamination in canola plants. Hakimeh Oloumi*, Effat Ahmadi Mousavi and Neda Hasibi
Heavy metal contamination of soil, water and air has caused serious environmental hazard in the biosphere due to rapid industrialization and urbanization. A variety of metal binding ligands such as organic acids and amino acids involve in the heavy metal remediation mechanisms by plants. This paper analyses the possible role of amino acid histidine and organic acids, namely, citric, oxalic and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 140 2 شماره
صفحات -
تاریخ انتشار 2006